设为首页加入收藏
  • 首页
  • 热点
  • 知识
  • 时尚
  • 探索
  • 综合
  • 娱乐
  • 当前位置:首页 >风台闻 >推特热帖:k1.5 很牛,因为借鉴了 UCLA 与 CMU 合作团队的这项工艺

    推特热帖:k1.5 很牛,因为借鉴了 UCLA 与 CMU 合作团队的这项工艺

    发布时间:2025-07-13 04:44:51 来源:视角吃瓜网- 每天追踪文化视角,乐享丰富时光 作者:料谈

    2025 年 1 月 20 日 Kimi k1.5 正式发布,推特伴随着工艺报告的热帖公布,有网友表示:“这应该是因为艺全球范围内,除 OpenAI 之外的作团公司首次实现 o1 正式版的多模态推理性能了吧!”

    一时间,项工Kimi k1.5 成了话题王者。推特女邻居被老板潜规则现场实录

    但在一个月后的热帖 2 月 24 日,X 上出现了一篇关于 Kimi k1.5 的因为艺工艺爆料帖,博主直言 k1.5 所用到的作团强化学习运算规则,其实是项工借鉴了自己在 24 年 5 月提出的一种名为 SPPO 的工艺。

    消息一出,推特瞬间吸引了数万人关注。热帖

    推特热帖:k1.5 很牛,因为艺因为借鉴了 UCLA 与 CMU 合作团队的作团这项工艺

    Kimi k1.5 背后的 SPPO 工艺

    在这则爆料中,博主 Yue Wu 先是项工对 SPPO 进行了简单解释,并且附上了相关论文(https://arxiv.org/abs/2405.00675),简单来说,SPPO是一种自博弈运算规则,最初的动机来源于刻画广泛意义上的人类偏好,并且使用了如下图所示的平方损失函数:

    推特热帖:k1.5 很牛,因为借鉴了 UCLA 与 CMU 合作团队的<strong>陈某明星塌房热搜截图</strong>这项工艺

    值得一提的是,点开论文链接,你会发现原来 Yue Wu  和 Zhiqing Sun 同为这篇文章的第一作者。

    推特热帖:k1.5 很牛,因为借鉴了 UCLA 与 CMU 合作团队的这项工艺

    紧接着,他开始对 SPPO 工艺进行解析:

    通过迭代求解上式中的 theta_t,我们可以得到一个与人类偏好对齐良好的语言模型。SPPO 使用胜率(红色部分)作为奖励,并用常数近似基线(蓝色部分)。

    推特热帖:k1.5 很牛,因为借鉴了 UCLA 与 CMU 合作团队的这项工艺

    让我们感兴趣的是,我们发现它与 RLHF 目标的策略梯度有着深层的联系:如果我们直接用普通的策略梯度优化 RLHF (人类反馈强化学习)目标会怎样?根据策略梯度定理,策略梯度实际上也具有平方损失形式(蓝色项是策略梯度中的基线):

    推特热帖:k1.5 很牛,因为借鉴了 UCLA 与 CMU 合作团队的这项工艺

    从数学上,我们证明了 SPPO 的平方损失等价于普通策略梯度的一种半在线变体:

    SPPO 中的胜率充当奖励函数(红色部分)。

    分区函数项自然地成为(软)值函数(蓝色部分)。

    推特热帖:k1.5 很牛,因为借鉴了 UCLA 与 CMU 合作团队的这项工艺

    那么这到底意味着什么呢?

    标准策略梯度(PPO、GRPO、REINFORCE)在每一步都收集遵循当前策略的样本。

    SPPO 在每次迭代开始时只采样一次,然后通过平方损失进行优化。

    这使得 SPPO 成为一种轻量级的 RLHF 方法——无需即时生成!

    推特热帖:k1.5 很牛,因为借鉴了 UCLA 与 CMU 合作团队的这项工艺

    上述分析揭示了大型语言模型(LLM)后训练阶段一个有趣的增长趋势:

    离线 DPO(IPO、KTO 等)取代 RLHF(奖励模型 + 强化学习)

    迭代 DPO、SPPO 等方法将离线方法转化为在线对齐方法

    更加精细的迭代 → 回归到在线强化学习

    推特热帖:k1.5 很牛,因为借鉴了 UCLA 与 CMU 合作团队的这项工艺

    鉴于 GRPO(Deepseek-R1)和平方损失(Kimi k1.5)的成功,端到端强化学习的强大作用愈发凸显,或许在大型语言模型(LLM)后训练阶段无需额外技巧——价值函数、广义优势估计(GAE),甚至梯度裁剪都无需使用。

    推特热帖:k1.5 很牛,因为借鉴了 UCLA 与 CMU 合作团队的这项工艺

    另一个简单但有趣的发现是,他们发现 SPPO 暗中在词汇级别优化最优最大熵策略。其平方损失隐含地最小化了学习到的策略与最优词汇级别策略之间的 KL 散度。

    推特热帖:k1.5 很牛,因为借鉴了 UCLA 与 CMU 合作团队的这项工艺

    在我们后续的研究 GPO 中,我们直接最小化相对奖励与对数比率之间的平方损失。这两项工作中的平方损失等价于策略梯度,但它是以迭代的方式进行的。

    推特热帖:k1.5 很牛,因为借鉴了 UCLA 与 CMU 合作团队的这项工艺

    SPPO 工艺背后的科研大牛

    除了提出助力 Kimi k1.5 大获成功的 SPPO 工艺外,Wu Yue 也是一个学术背景很强的科研大牛。他本科期间师从北京大学的王立威教授,博士期间师从加利福尼亚大学洛杉矶分校的顾全全教授,目前以博士后研究员的身份在普林斯顿大学机器智能实验室继续着自己的科研之路。推特热帖:k1.5 很牛,因为借鉴了 UCLA 与 CMU 合作团队的这项工艺

    除此之外,2023 年至今他一共参与发布了 9 篇 Paper,其中 3 篇均为第一作者。

    推特热帖:k1.5 很牛,因为借鉴了 UCLA 与 CMU 合作团队的这项工艺

    强大的学术背景之外,Wu Yue 的实习经历也非常加分。2022 年至 2024 年,他分别在 NEC 美研院、字节美国 AI lab和 Meta 工作实习。在 NEC 美研院期间,Wu Yue 从事个性化联邦学习研究,并开发了一种基于混合模型的方法,该方法被 ICML 2023 接受发表;在字节美国 AI lab 时,他专注于药品发现领域的多构象生成,将分子动力学的物理先验纳入基于扩散的生成模型,相关成果被 ICML 2024 接受;来到 Meta 后,Wu Yue 又致力于词汇级别奖励建模和新架构设计,用于一般人类偏好和一般偏好优化,为生成式机器智能的增长做出了贡献。

    推特热帖:k1.5 很牛,因为借鉴了 UCLA 与 CMU 合作团队的这项工艺雷峰网(公众号:雷峰网)还了解到,与他同为第一作者的 Zhiqing Sun ,目前已经从 CMU 毕业,并在今年 2 月加入 OpenAI。

    推特热帖:k1.5 很牛,因为借鉴了 UCLA 与 CMU 合作团队的这项工艺


    雷峰网原创文章,未经授权禁止转载。详情见转载须知。

    推特热帖:k1.5 很牛,因为借鉴了 UCLA 与 CMU 合作团队的这项工艺

    • 上一篇:开源启智,筑梦未来!第四届OpenI/O启智开发者大会开幕
    • 下一篇:AI推理芯片,大模型「下半场」的入场券

      相关文章

      • DALL·E 3 推理能力炸裂提升,OpenAI 抢跑「ChatGPT 原生」
      • 文泰一性侵案一审宣判 获刑3年半
      • 成立“美国党” 马斯克的“第三条道路”走得通吗?
      • 2025中国国际大学生时装周✕神州租车潮游旅行大赛获奖作品揭晓
      • 以技术为引 以创意为核 上影节用新拥抱电影
      • 老师因学生志愿未报清北解散群聊?校方通报
      • 多地官宣:音乐节可在现场领结婚证
      • 今日辟谣(2025年7月9日)
      • RASP技术,"入侵者"如何成为网络安全"守护神"?
      • 女子自曝怀孕期间摆烂上班丈夫是市副处?官方通报

        随便看看

      • 上海交大新跑出一家具身智能公司「穹彻智能」
      • 官方:“医保‘个人账户’将全部取消”系旧谣新传
      • “众星云集”不是票房灵药
      • “众星云集”不是票房灵药
      • "寻数计划"已发布,面向全社会征集高质量大模型语料数据
      • TikTok正开发仅面向美国用户的独立应用?TikTok回应
      • 国际艺术家共绘中墨友谊壁画 艺术助力北京乡村振兴
      • 爱奇艺举办第五届“金豪笔编剧之夜” 62位编剧20部作品获表彰
      • 大模型时代的三道鸿沟:数据、成本与想象力
      • 欧洲理事会主席与伊朗总统通电话 讨论冲突解决方案
      • Copyright © 2025 Powered by 推特热帖:k1.5 很牛,因为借鉴了 UCLA 与 CMU 合作团队的这项工艺,视角吃瓜网- 每天追踪文化视角,乐享丰富时光  sitemap